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ABSTRACT 
This study evaluated systematically linear predictive models between vegetation indices (VIs) de-
rived from radiometrically corrected airborne imaging spectrometer (HyMap) data and field meas-
urements of leaf area index (LAI) (n=40). Ratio-based and soil-line related broadband VIs were 
calculated after HyMap reflectance had been spectrally resampled to Landsat TM channels. Hy-
perspectral VIs involved all possible types of 2-band combinations of RVI and PVI. Cross-
validation procedure was used to assess the prediction power of the regression models. Analyses 
were performed on the entire data set or on subsets stratified according to stand age. A perpen-
dicular vegetation index (PVI) based on wavebands at 1,088 and 1,148 nm was linearly related to 
leaf area index (LAI) (R2=0.67, RMSE=0.69 m2m-2 (21% of the mean); after removal of one forest 
stand subjected to clearing measures: R2=0.77, RMSE=0.54 m2m-2 (17% of the mean)). The study 
demonstrates that for hyperspectral image data, linear regression models can be applied to quan-
tify LAI with good accuracy. Best hyperspectral VIs in relation with LAI are typically based on 
wavebands related to prominent water absorption features. Such VIs measure the total amount of 
canopy water; as the leaf water content is considered to be relatively constant in the study area, 
variations of LAI are retrieved. 
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INTRODUCTION 
The majority of studies for extracting biophysical variables from remotely sensed data have used 
empirical techniques to relate the spectral measurements to biophysical parameters (1). While 
much work has been done with agricultural crops, relatively little research has been done on inves-
tigating the relationships between forest leaf area index (LAI) and satellite data (2). Most of the 
studies on forests have used broadband VIs (e.g. NDVI, RVI) to derive LAI of coniferous forest 
stands; however, with varying success (3;4,5,6,7,8;9). Few studies looked at the suitability of high 
spectral resolution remote sensing data to derive the LAI of coniferous forests. (10) tested CASI 
data using univariate and multivariate regression and a VI based algorithm and found strong rela-
tionships with reasonable low errors. (11) tested if the red edge inflection point (REIP) is primarily 
controlled by forest canopy LAI using helicopter-borne spectroradiometer data and found a strong 
non-linear correlation between plot LAI and the REIP for Sitka spruce (Picea sitchensis). For the 
same tree species, forest LAI was recently related to the canopy REIP computed from imaging 
spectrometer data (CASI) with success (12). Despite the research undertaken it is often unclear 
whether the high spectral resolution data offer advantages over broadband data (13). 
The overall aim of the work was to evaluate the information content of hyperspectral remote sens-
ing data for the estimation of forest LAI in comparison with broadband data. More specific objec-
tives were (i) to determine spectral vegetation indices (VI) that are best suited for characterising 
LAI, and (ii) to compare and contrast traditional broad-band and hyperspectral VIs in terms of ba-
sic statistical characteristics of the predicted relative to the observed LAI. The research was re-
stricted to Norway spruce as only forest stands of this single species occur in sufficient numbers 
within the selected test site. Besides, coniferous forests do not show a saturation of VI with in-



EARSeL eProceedings 3, 3/2004 406 

creasing LAI, whereas the saturation effect limits the usefulness of optical remote sensing for bio-
physical parameter mapping for mature deciduous forests (9). 

MATERIAL AND METHODS 
The Idarwald forest (49°45’N, 7°10’E) is located on the north-western slopes of the Hunsrück 
mountain ridge, Germany. It covers an area of about 7,500 ha. In 1999, 42 relatively homogenous 
Norway spruce (Picea abies) stands were identified at the Idarwald study area. Within these 
stands, 42 square 0.09 ha plots were established. The central location of each ground plot was 
determined with an accuracy of about ±5 m using a differential global positioning system (GPS). 
Signal distortion within the forest stands did not give as high accuracies as specified by the manu-
facturer. Of a total of 42 stands, one was not covered by the HyMap imagery, and another one 
was thinned in the period between ground data collection and the HyMap overpass. These two 
stands were excluded from the analysis reducing the data set to 40 stands.  
At each plot, measurements of forest leaf area index (LAI) were carried out. LAI was estimated 
using a Li-Cor LAI-2000 instrument. The instrument was only operated under overcast sky condi-
tions. Within each plot, Li-Cor measurements were taken at ten regularly spaced points from which 
the average was calculated. Above the canopy measurements were taken in a nearby open field 
before entering the plots. Although Li-CoR measurements represent rather an effective plant area 
index instead of the real leaf area index due to the non-random distribution of leaves, no correc-
tions were applied.  
To improve LAI mapping it has been suggested to derive land cover specific VI-LAI relationships 
using land cover maps (7,9). This stratification process is usually based on the species type. As in 
the present study just one single species is considered, it was decided to stratify the data set ac-
cording to stand age (Table 1). 

Table 1: Resulting subsets after stratification according to forest stand age 

Subset Designation Abbreviation Age n 
1 total (pooled dataset) t 10-148 40 
2 medium to old mo 30-148 35 
3 old o 80-148 17 
4 medium m 30-79 18 
5 young y 10-29 5 

 
The hyperspectral HyMap sensor (Integrated Spectronics, Australia) was flown over the Idarwald 
test site on 17 July 1999. The data were recorded at 13:00 hrs CET at an average flying height of 
1,980 m above ground level and free of cloud cover. The resulting ground resolution was about 
5 m with a full scene covering approximately 3 km x 10 km. From the original data cube with 128 
bands between 400 and 2,500 nm, 14 HyMap spectral channels with high noise were identified as 
bad bands and removed from the data set. Consequently, subsequent analyses were restricted to 
the remaining 114 bands. To correct the view angle effect, an across track illumination correction 
was applied to each spectral band independently (ENVI 3.4, Research Systems). For this purpose, 
a second-order polynomial was fitted to the data. Based on the fitted polynomials, a normalization 
procedure was applied. The radiometric correction steps applied to the HyMap data consisted of 
the atmospheric correction, the correction for illumination effects caused by topography, and the 
in-flight calibration of the HyMap sensor system (14). The image data were geometrically cor-
rected using the parametric geocoding software PARGE (15). For this purpose, the required DEM 
with an original pixel size of 20 m was resampled to 5 m. Mean reflectance spectra were extracted 
from the image data at a fixed radius around the central position of each test plot (GPS measure-
ment). 



EARSeL eProceedings 3, 3/2004 407 

Table 2: Broadband and hyperspectral vegetation indices investigated in this study.  
ρ=reflectance, TM=Thematic Mapper 

Name Abbreviation Equation Reference 

Ratio vegetation index RVI 
3

4

TM

TMRVI
ρ
ρ

=  (16) 

Normalised difference 
vegetation index NDVI 

34

34

TMTM

TMTMNDVI
ρρ
ρρ

+
−

=  (17) 

Perpendicular vegetation 
index PVI 2

34

1 a

baPVI TMTM

+

−−= ρρ  

a = 0.9, b = 0.1 

(18) 

Transformed soil-
adjusted vegetation index TSAVI 

( )
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baa
TSAVI
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=
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34
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a = 0.9, b = 0.1 
(19) 

Mid-infrared vegetation 
index MVI 

5

4

TM

TMMVI
ρ
ρ

=  (2) 

Greenness vegetation 
index GVI 

75
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21

1800.00840.0
7243.05436.0
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Narrowband RVI 2,1BdBdRVI  
2

1
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Bd
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Narrowband PVI 2,1BdBdPVI  
2
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1 a

ba
PVI BdBd
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=
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Both hyperspectral and broadband VIs were computed from the radiometrically corrected HyMap 
imagery (Table 2). Ratio-based and orthogonal broadband VIs were calculated after the HyMap 
data had been resampled to Landsat TM spectral bands involving the appropriate Landsat TM 5 
filter functions; the ratio-based VIs were RVI and NDVI; the orthogonal VIs were PVI and TSAVI; 
additional VIs were MVI, and GVI. Hyperspectral (narrowband) indices were computed for RVI and 
PVI involving all possible two-band combinations of 114 channels (12,996 band combinations). 
PVI requires site-specific soil line slopes a and intercepts b. As no soil spectral data was available, 
standard values (a=0.9; b=0.1) were used. It was assumed that the soil line concept, originally 
defined for the red-nIR feature space, can be transferred into other spectral domains (21). Hence, 
it was supposed that soil lines exist between all wavebands. 
Linear regression was employed to evaluate the relationships between biophysical stand variables 
and VI. For conifers it has been shown, that linear regression models seem to be appropriate as 
saturation occurs only at relatively high densities (6,9). The cross-validation procedure was used 
to validate the regression models. The cross-validated RMSE is a good indicator of the accuracy 
of the model in predicting unknown samples. 

RESULTS AND DISCUSSION 
Although forest stands from very young to very old stands were probed, the variation of LAI values 
is rather moderate (Table 3). LAI was most strongly correlated with TM4, less correlated with TM3, 
and least correlated with TM5 (Table 4). Correlations in all bands were positive. Correlation spec-
tra were computed for reflectance and first derivative of reflectance (not shown). The strength of 
the relations with LAI generally decreases from nIR to mIR wavebands and is greater for first de-
rivative reflectance spectra in opposition to reflectance spectra. The nIR region of reflectance 
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spectra reveals the highest correlations followed by the green peak, the mIR region, and the chlo-
rophyll absorption features in the red and blue wavebands. 

Table 3: Summary statistics of forest stand variables (n=40) 

 Mean Standard 
deviation Maximum Minimum Range 

LAI /m2 m-2 3.24 0.97 5.47 1.66 3.81 

Table 4: Linear correlation between forest LAI and HyMap reflectance resampled to TM spectral 
bands (n=40); ** correlation coefficient significant at P<0.01, * correlation coefficient significant at 
P<0.05 

 TM3 TM4 TM5 
LAI 0.36* 0.76** 0.33* 

 
An inverse relationship can be observed in Figure 1, where LAI is plotted against stand age for the 
probed Norway spruce stands of Idarwald test site. The inverse relation between LAI and stand 
age seems to be related to the fact that during stand development, crowns of individual trees ex-
pand and increase utilization of available growing space. The point at which crowns of different 
trees begin to interact is considered as being the peak LAI after which a rapid decrease takes 
place due to competition between the individual trees (22). It has been shown that stands of slowly 
growing species (pinus contora) reached its maximum LAI at age 40 and that it lasted for about 30 
years (22). In Figure 1, a peak LAI can be assumed at an age of 20. From an age of 20 onwards, 
a gradual decline in LAI up to age 150 is evident. Maximum variation of LAI occurs at age 60-70. 
Obviously, some stands have been thinned lately whereas others have been thinned a long time 
ago. After an increase of LAI up to age 100 a decrease of LAI is caused by gaps related to logging 
measures. It can be concluded that the observed age course of Norway spruce based on the 
probed sample is a result of both natural circumstances and actual management practices. It is 
also clear from Figure 1, that LAI can vary considerably within a single age class and thus, infor-
mation on LAI cannot simply be derived from an age class map. 
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Figure 1: LAI as a function of stand age for Norway spruce stands at Idarwald test site (n=40). 

To determine optimal narrowband VIs, coefficients of determination (R2) between all possible two-
band VIs and LAI were computed. The results are illustrated in 2D-correlation plots (Figure 2). 
Based on the R2 values in the 2D-correlation plots, band combinations that form the best indices 



EARSeL eProceedings 3, 3/2004 409 

were determined. These were considered as optimal indices and were named RVI_opt and 
PVI_opt. Up to three best performing indices were considered when they occurred in different 
wavelength regions. For example, in Figure 2, the indices that have highest correlation with LAI 
were extracted from the 2D-correlation plot range above 0.80; the three most dominant indices 
occur in the regions around 1,346nm/1,207nm, 1,134nm/920nm, and 1,802nm/1,163nm. The band 
positions were then tabulated in Table 5. For the best performing narrowband index, cross-
validated R2 and RMSE were computed (Table 6). 

 
Figure 2: 2D-correlation plot that shows the correlation (R2) between LAI and narrowband RVI val-
ues (subset m). The matrix is symmetrical, therefore just values above the diagonal are displayed. 
Below the diagonal, band combinations are marked in red where R2>0.75. The displayed average 
reflectance spectrum of all measured forest plots facilitates the interpretation of the 2D-correlation 
plot. 

Table 5: Best narrowband RVI and PVI derived from 2D-correlation plots for different subsets. 
Subset y was excluded from the analysis due to the small number of samples 

t   (10-148 years) mo   (30-148 years) o    (80-148 years) m    (30-79 years) 
 

λ /nm r2 λ /nm r2 λ /nm r2 λ /nm r2 

RVI_opt 
918/965 
850/680 
1165/750 

.65 

.55 

.60 

896/965 
1802/1043 
1346/1119 

.68 

.65 

.65 
747/807 .60 

1346/1207 
1134/920 
1802/1163 

.85 

.85 

.80 

PVI_opt 1088/1148 
1148/807 

.70 

.70 895/1134 .64 1445/2060 .56 
918/1134 
1320/1220 
2220/457 

.83 

.82 

.72 
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Table 6: Cross-validated R2 (first line) and cross-validated RMSE (second line) for linear regres-
sion between broadband and hyperspectral vegetation indices and forest stand LAI. The best VIs 
are typed in bold. Subset y was excluded from the analysis due to the small number of samples 

 Subset t mo m o 
 n 40 35 17 18 

.40 .42 .40 .17 RVI 
1.23 .92 1.05 1.67 
.43 .44 .44 .17 NDVI 

1.13 .86 .95 1.72 
.57 .29 .23 .22 PVI 
.87 1.29 1.7 1.7 
.61 .36 .30 .24 TSAVI 
.80 1.06 1.35 1.55 
.38 .54 .58 .35 MVI 
1.3 .71 .71 1.83 
.58 .31 .24 .24 

B
ro

ad
ba

nd
 V

I 

GVI 
.85 1.2 1.62 1.55 
.62 .64 .77 .57 RVI_opt 
.78 .58 .45 .57 
.67 .45 .41 .52 H

yp
er

-
sp

ec
tr

al
 V

I 

PVI_opt 
.69 .86 1.02 .58 

 
The first step in the analysis of broadband VIs was to compare ratio to soil-adjusted VIs and to 
compare VIs based on Vis and nIR reflectance to those based on mIR and nIR reflectance. Broad-
band ratio VIs (RVI and NDVI) generally show relatively low values of R2 and relatively high values 
of RMSE for all subsets. The soil-adjusted broadband models (PVI and TSAVI) perform sig-
nificantly better for the pooled data set; obviously, background effects related to soil and litter were 
reduced. While younger stands reveal a denser canopy with little background contribution to the 
signal, the background may have a larger influence on reflectance in older stands with gaps and a 
more open canopy. Hence, when the total age dynamic is considered, TSAVI and PVI perform 
better than RVI or NDVI, but when age classes are considered separately no performance 
increase is observed. The findings of (8), that soil-adjusted VIs compared to the RVI have a de-
creased sensitivity to forest LAI, can not be confirmed. 
Broadband MVI is more closely related to LAI than broadband RVI and NDVI (subset m and mo). 
The mIR band in combination with the nIR band seems to contain more information relevant to the 
characterisation of forest canopies than the combination of red and nIR bands. Recently, a closer 
relation of forest LAI to radiation in the mIR than to radiation in the VIs was found by (23) for tropi-
cal vegetation; the authors put forward that this could be the case also with boreal forests. The 
results found in the present study also support the suggestion by (2) that mIR bands may improve 
LAI estimation, particularly in more open forest stands. 
In the second step of the analysis, the broadband VIs were compared to the hyperspectral VIs to 
see if hyperspectral indices improve the prediction accuracy. All best narrowband RVI (RVI_opt) 
and PVI (PVI_opt) perform better than the corresponding broadband VIs. RMSE values of about 1 
m2 m-2 or larger for regression models between broadband RVI and LAI (subsets am, a, and m) 
decrease to values as low as 0.5 m2 m-2 for the optimal narrowband RVI. The improvement of the 
narrowband models compared to the broadband models is not that distinct in the case of the PVI. 
Over all age classes PVI_opt performs better than RVI_opt; for subsets mo, m, and o, however, 
RVI_opt shows lower RMSE values than PVI_opt.  
To sum up, it can be concluded that the hyperspectral data set contains more information relevant 
to the estimation of forest LAI than multispectral data. However, this does not always seem to be 
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valid: For instance, (24) came to the conclusion, that hyperspectral VIs derived from field spectral 
measurements were not better at estimating green crop area index (a variable related to LAI) than 
traditional broadband VIs. For old stands of age 80 or more (subset o), relatively poor relationships 
were found particularly for the broadband VIs. Also other studies reported problems with old 
stands that have been ascribed to shadow effects and a relatively dark background in the nIR (5). 
In the scatter plot between PVI_opt and LAI (Figure 3), even at high values of LAI no saturation is 
evident. A closer look reveals an outlier at position 4.1/-0.104. The corresponding forest stand of 
age 34 was identified in the image data. While the 1999 image showed no abnormality in reflec-
tance, a striped pattern was detected in recently acquired HyMap data of 2003. From the spectral 
reflectance properties, the image pixels representing stripes could be identified as a mixture be-
tween tree crowns and forest litter. The striping pattern was caused by aisles that had been cut 
into the forest between the image acquisition and field measurements. Forest aisles allowed for 
the employment of harvesters in order to remove trees that had been exposed to game bite (per-
sonal communication of the responsible forest official, G. Womelsdorf, 25.02.2004). 
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Figure 3: Linear regression between best narrowband PVI and LAI. Values of R2 and RMSE are 
cross-validated. When the outlier at position 4.1/-0.104 is removed, cross-validated R2 increases 
to 0.77 and RMSE decreases to 0.54 m2 m-2. 

CONCLUSIONS 

The following conclusions can be drawn from the research: 

• Forest leaf area index (LAI) and crown volume (VOL) can be estimated with good accuracy 
from hyperspectral remote sensing data 

• Orthogonal compared to ratio VIs are better suited to characterise forest LAI and VOL  

• Hyperspectral data contains more information relevant to the estimation of the forest stand 
variables LAI and VOL than multispectral data 
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